
  

BOLO8BLF Low Latency Control 
Factory Acceptance Test

UUT

Optional External 
CLK (TTL, 1MHz)

Optional External 
TRG (TTL)

RJ45 front panel 
connectors.



  

Relevant documentation

BOLO8BLF Theory of operation and users guide: 
https://github.com/jacklovell/bolodsp-doc/releases

BOLO8BLF Calibration report and guide (including MDSplus usage): 
http://www.d-tacq.com/resources/Bolo_calibration_report_user-guide.pdf

BOLO8BLF python control script available from:
https://github.com/D-TACQ/acq400_hapi

BOLO8BLF LLC configuration script available from: 
https://github.com/D-TACQ/AFHBA404

https://github.com/jacklovell/bolodsp-doc/releases
http://www.d-tacq.com/resources/Bolo_calibration_report_user-guide.pdf
https://github.com/D-TACQ/acq400_hapi
https://github.com/D-TACQ/AFHBA404


  

BOLO8BLF operation via ethernet 
connection

Standard BOLO operating procedure via ethernet 
requires configuration of /mnt/local/sysconfig/bolo.sh. 
Set the desired channels to calibrate. Example below 
demonstrates channels one and two. All of the channels 
can be calibrated at once (or any subset of channels). 
acq2106_061> cat /mnt/local/sysconfig/bolo.sh

BOLO_ACTIVE_CHAN="1 2"

BOLO_VERBOSE=1

set.site 14 DIODE_DROP_V 0.5

set.site 14 THEAT 1.0

set.site 14 TCOOL 1.0

set.site 14 VBIAS 1.0

COPY_CALIB_DATA=1



  

BOLO8BLF operation via ethernet 
connection

The BOLO system must be calibrated before 
use. There is a python wrapper for this which 
can be found in the D-TACQ github repository: 
https://github.com/D-TACQ/acq400_hapi/blob/master/user_apps/special/bolo8_cal_cap_loop.py

This script can be used as such: 
python bolo8_cal_cap_loop.py --cal=1 --cap=1 --shots=1 acq2106_061

The arguments can be changed to perform only 
a capture and only a calibration by changing 
cap and cal respectively. 

https://github.com/D-TACQ/acq400_hapi/blob/master/user_apps/special/bolo8_cal_cap_loop.py


  

BOLO8BLF & AFHBA404

The BOLO8BLF can be operated in low latency control mode.  In this mode an 
AFHBA404 PCIexpress card, in a host, is used to offload data from the UUT. 

In order to use this mode please clone the AFHBA404 github repository:

https://github.com/D-TACQ/AFHBA404

Once this is done (follow instructions on the AFHBA404 github) and once the 
AFHBA404 is inserted into the host the driver can be loaded. To do this navigate to 
~/PROJECTS/AFHBA404/ and then run 

make

in this directory. Once this is complete run 
sudo ./scripts/install-hotplug

and then 
sudo ./scripts/loadNIRQ

These steps are also outlined in the README contained in the github repo.

https://github.com/D-TACQ/AFHBA404


  

Low latency data offload using 
cpucopy

In order to use the low latency control on the UUT the user must first run llc-
bolo-harness.py  which is contained in the AHFBA404 github repository 
under the HAPI directory. It is important that the system is not calibrated 
after this script has been run since a valid calibration will not be obtained 
with the LLC parameters set. To run the llc-bolo-harness.py  command: 

SPAD_LEN=8 AISITES=1 ./HAPI/llc-bolo-harness.py acq2106_061 

At this point the UUT is configured for LLC operation and the cpucopy 
program can now be run (devnum is the index of the port on the 
AFHBA404): 

sudo DEVNUM=0 DO32=0 AOCHAN=0 DUP1=0 AICHAN=48 SPADLONGS=8 ./LLCONTROL/afhba-llcontrol-
cpucopy 21000

Then run a capture as before using:

python bolo8_cal_cap_loop.py --cal=0 --cap=1 --shots=1 acq2106_061 

A copy of the data will be stored to afhba.<sfp_port_number>.log



  

Viewing LLC data on host

To view data on the host machine an interactive python instance was 
started. The data is loaded using numpy and plotted using matplotlib. The 
data being plotted below is a from a flashing bicycle lamp. 

N.B. the Y axis scaling has not been corrected and so will be inaccurate. 


	Front Panel
	Documentation
	Configuring channels to calibrate
	Controlling UUT via ethernet
	Installing AFHBA404 on a host
	Low latency control - data offload
	Low Latency Control - viewing data

